Status of and future plans for JMA's Atmospheric Motion Vectors

Ryo OYAMA and Kazuki SHIMOJI Meteorological Satellite Center (MSC) of Japan Meteorological Agency (JMA)

9th International Winds Workshop in Annapolis

14-18 April 2008

Contents

MTSAT operation schedule

Status of JMA's AMVs

Introduction of new height assignment scheme since 30 May 2007

Current activities

Summary and future plans

Number of Obs	servation / day 👘
Full disk	Half disk
24	32

Status of JMA's AMVs (1/2)

MTSAT-1R AMVs generated by JMA

Kind of AMVs	Level of height	Time (UTC)	Image sector	lmage interval (minutes)	Distribution
Infrared	Upper, middle, lower	00, 06, 12, 18	Full Disk	15	BUFR via GTS *1
(10.8 micro-meter)	Upper, middle, lower	02-05, 08-11, 14-17, 20-23	Northern Hemisphere	30	Internal use only
	Upper, middle, lower	01,07,13,19	Northern Hemisphere	60	Internal use only
Water Vapor	Upper, middle	00, 06, 12, 18	Full Disk	15	BUFR via GTS *1
(6.8 micro-meter)	Upper, middle	02-05, 08-11, 14-17, 20-23	Northern Hemisphere	30	Internal use only
	Upper, middle	01, 07, 13, 19	Northern Hemisphere	60	Internal use only
Visible	Lower	00,06	Full Disk	15	BUFR via GTS *1
(0.63 micro-meter)	Lower	02-05, 08, 09 21-23	Northern Hemisphere	30	Internal use only
	Lower	01,07	Northern Hemisphere	60	Internal use only
3.8 micro-meter *2	Lower	12, 18	Full Disk	15	Internal use only
	Lower	08-11, 14-17, 20-23	Northern Hemisphere	30	Internal use only
	Lower	13, 19	Northern Hemisphere	60	Internal use only

*1 JMA terminated SATOB at 06UTC on 1 April 2008

*2 JMA started to generate 3.8 micro-meter AMVs in operation on 25 March 2008

Status of JMA's AMVs (2/2)

Monthly statistics of AMVs (QI>0.85) against sonde observations

RMSVD(SH)

 \rightarrow BIAS(NH)

 \times BIAS(TR)

 \leftarrow BIAS(SH)

(m/s)

-5

-10

Blue: Northern hemisphere(20-50N)

Green: Tropics(20S-20N)

Red: Southern hemisphere(50-20S)

What change for IR AMVs?

Slow BIAS after the introduction of new scheme is smaller than that before, in particular, over southern hemisphere in winter (inside pink circle)

What change for WV AMVs?

Quality is not significantly changed between before and after the introduction of new height assignment scheme.

New height assignment scheme since 30 May 2007 (1/4)

New height assignment scheme is applied to upper and middle height-level (above 700 hPa) IR AMVs and cloudy-region WV AMVs since 06UTC 30 May 2007.

(1) Improvement of height correction procedure for semi-transparent cloud

In the procedure of H2O-IRW intercept method (Nieman et al., 1993) to correct semitransparent cloud radiances, opaque cloud radiances of IR and WV channels simulated by using Radiative Transfer Model (RTM) is newly corrected in accordance with observed IR and WV radiances.

(2) Use of the most frequent cloud height level

AMV is newly assigned to the most frequent cloud height of height-histogram accumulated in 50-hPa intervals (In previous scheme, heights of 0.1 and 10 % coldest pixel are used for IR AMVs and cloudy-region WV AMVs, respectively).

Figure 1: Example of height-histogram for an AMV Blue: Histogram accumulated in 4-hPa height intervals Red : Histogram accumulated in 50-hPa height intervals

New height assignment scheme since 30 May 2007 (2/4)

Comparison between new AMVs and previous AMVs

Monthly statistics of AMVs (QI>0.85) against sonde observation

Statistics for *May* 2007

What difference ?

BIAS and RMSVD are improved by introducing new height assignment scheme.

The number of new AMVs is larger than that of previous AMVs at middle height-level.

IR AMVs (above 400 hPa)

AMV (QI>0.85) Statistics	NH (50)	N - 20N)	TR (201	ý - 20S)	SH (205	S - 50S)
against sonde wind	New	Previous	New	Previous	New	Previous
RMSVD (m/s)	7.39	8.50	5.1	5.96	7.29	8.40
BIAS (m/s)	-1.47	-2.22	-0.78	-1.20	-0.80	-2.11
Number of collocated AMVs	11283	10530	3510	2438	2163	2014
Number of AMVs	52377	53123	36918	29325	39672	3963

IR AMVs (700 to 400 hPa)

AMV (QI>0.85) Statistics		NH (50)	1	- 20N)		TR (201	V - 20S)		SH (205	S -	50S)
against sonde wind		New		Previous		New	Previous		New	F	revious
RMSVD (m/s)		6.36		7.50		3.84	4.56		6.41		7.43
BIAS (m/s)		-1.02		-1.20		-0.50	-1.74		-0.76		-1.6
Number of collocated AMVs		1090		475		115	56		392		21
Number of AMVs		5854	/	3093	Ν	1669	840	\backslash	8836	Ι	596

Cloudy-region WV AMVs (above 400 hPa)

					/	
AMV (QI>0.85) Statistics	NH (501	N - 20N)	TR (201	N - 20S)	SH (205	S - 50S)
against sonde wind	New	Previous	New	Previous	New	Previous
RMSVD (m/s)	7.40	7.95	5.44	5.53	7.17	7.79
BIAS (m/s)	0.21	0.36	0.27	-0.06	1 17	1.25
Number of collocated AMVs	25321	14214	5836	1438	2940	122
Number of AMVs	91495	56982	53801	18708	52777	2719

What difference ?

The number of new AMVs is larger than that of previous AMVs.

New height assignment scheme since 30 May 2007 (3/4) Comparison between new AMVs and previous AMVs

Monthly statistics of AMVs against JMA's NWP first-guess at each height-level

IR AMVs (above 700 hPa) (QI>0.85), May 2007

1) Between 100 and 400 hPa, slow BIAS of new AMVs is much smaller than that of previous AMVs.

2) Between 500 and 700 hPa, fast BIAS is newly found for new AMVs. → Parts of upper heightlevel AMVs are erroneously assigned to lower level.

New height assignment scheme since 30 May 2007 (4/4) Comparison between new AMVs and previous AMVs

Monthly statistics of AMVs against JMA's NWP first-guess at each height-level

Cloudy-region WV AMVs (QI>0.85), May 2007

1) BIAS of new AMVs is nearly same as that of previous AMVs.

2) The number of new AMVs is larger than that of previous AMVs. → This feature means the quality of new AMVs is generally higher than that of previous AMVs.

Current Activities (1/5)

(1) Introduction of 3.8 micro-meter AMVs

3.8 micro-meter images of MTSAT-1R are used for tracking lower-height-level clouds at nighttime. JMA started to use 3.8 micro-meter AMVs in JMA's NWP on 25 March 2008 (Yamashita, 2008)

The number of high-quality (QI>0.85) 3.8 micro-meter AMVs is approximately 10% larger than that of lower-height-level IR AMVs.

3.8 micro-meter AMVs lead to the increase of the available lowerheight-level wind data at nighttime

Current Activities (2/5)

(2) Computation of AMVs from Rapid-Scan Images of MTSAT-2

AMVs computed by using the images of currently stand-by MTSAT-2 at several time intervals (15, 7, 4-minutes) are expected to contribute to T-PARC (Thorpex- Pacific Asian Regional Campaign) study scheduled in the summer of 2008. What difference

Current Activities (3/5)

(2) Computation of AMVs from Rapid-Scan Images of MTSAT-2

For IR and WV AMVs, 4-min and 7-min AMVs have generally lower quality than 15-min AMVs, in terms of number and QI., due to the lower image-resolutions.

JMA considers "optical-flow" method is another available feature-tracking method.

Wind vectors of WV AMVs computed by using MTSAT-2 images at 4-minute intervals between 0500 UTC and 0530 UTC on 7 August 2007. Black Star: T0706, White star:T0707

Current Activities (4/5)

(3) Development of follow-on height assignment scheme

JMA has been developing a follow-on height assignment scheme directly linked to feature-tracking in collaboration with EUMETSAT since 2006. Some experiments show using the information on feature-tracking can reduce fast BIAS of JMA's current IR AMVs at middle-height-level (500-700 hPa), (Oyama et al. (2008)).

(4) **Response to Recommendation 34.15**

In response to CGMS Recommendation 34.15 on a comparison of the operational algorithms for the AMV height assignment, JMA calculated AMVs using METEOSAT-8 0.8, 10.8 and 6.2 micro-meter images at 1200, 1215 and 1230 UTC on 18 August 2006 by the current JMA's algorithm.

Current Activities (5/5)

(5) Reprocess of AMVs using past satellite images

Reprocessed AMVs by using GMS images were used in 25-year Japanese longterm ReAnalysis (JRA-25) (Onogi et al., 2007). JMA/MSC plans to reprocess AMVs by using GMS-3 to 5, GOES-9, and MTSAT-1R images in using available best height assignment scheme again.

Preliminary comparison between AMVs by current and previous schemes GMS-5 AMVs for *January 2000*

IR AMVs (above 400 hPa)

AMV (QI>0.85) Statistics	NH (50N - 20N)		TR (201	V - 20S)	SH (20S - 50S)		
against sonde wind	Current	Previous	Current	Previous	Current	Previous	
RMSVD (m/s)	10.27	13.34	5.31	5.96	10.47	11.83	
BIAS (m/s)	-3.14	-7.16	-0.58	-0.54	-1.37	-2.13	
Number of collocated AMVs	727	3073	5167	4801	2159	3716	

IR AMVs (700 to 400 hPa)

AMV (QI>0.85) Statistics	NH (50N - 20N)		TR (201	N - 20S)	SH (20S - 50S)		
against sonde wind	Current	Previous	Current	Previous	Current	Previous	
RMSVD (m/s)	9.13	11.76	5.01	7.29	7.41	7.67	
BIAS (m/s)	-0.43	-5.28	-1.02	-1.43	0.61	-1.36	
Number of collocated AMVs	3089	1609	201	108	615	299	

Cloudy-region	WV	AMVs	(above	400 hPa)

AMV (QI>0.85) Statistics	NH (50N - 20N)		TR (201	V - 20S)	SH (20S - 50S)		
against sonde wind	Current	Previous	Current	Previous	Current	Previous	
RMSVD (m/s)	10.30	10.64	5.38	5.72	10.49	11.66	
BIAS (m/s)	-1.89	-1.99	0.38	0.79	-0.05	0.87	
Number of collocated AMVs	1220	2660	6803	3242	2772	2633	

Quality of AMVs could be improved by introducing current height assignment scheme into AMV reprocessing !

Summary and future plans (1/2)

Summary

- JMA introduced new height assignment scheme into upper and middle height-level IR AMVs and cloudy-region WV AMVs on 30 May 2007. The AMV qualities are improved.
 Particularly, slow BIAS of IR AMVs over middle latitudes are reduced, and the number of high-quality cloudy-region WV AMVs is increased.
- 2) 3.8 micro-meter AMVs was introduced in operation on 25 March 2008. The 3.8 micro-meter AMVs will contribute to increasing available low-height-level AMVs at nighttime.
- 3) In response to Recommendation 34.15, JMA calculated AMVs using METEOSAT-8 0.8, 10.8 and 6.2 micro-meter images by the current JMA's AMV computation scheme.

Summary and future plans (2/2)

Future plans

- 1) JMA will compute MTSAT-2 AMVs by using best parameters (template size etc.) to contribute to T-PARC study. JMA considers "*optical-flow*" method is another available tracking scheme in using images at shorter time intervals.
- 2) In the future, JMA plans to introduce a follow-on height assignment scheme for upper and middle height-level IR AMVs in operation.
- 3) JMA plans to reprocess AMVs using the images of past geostationary satellites by using available best height assignment scheme.

Thank you for your attentions !

References

Borde, R. and R. Oyama, 2008: A direct link between feature tracking and height assignment of operational AMVs, Proceedings of 9th International Winds Workshop.

Imai, T. and R. Oyama, 2008: Developments for Quality Improvement of Atmospheric Motion Vectors product, Meteorological Satellite Center technical note, 51, 41-55 (in Japanese).

JMA, 2007: JMA's Atmospheric Motion Vectors, JMA-WP-06, CGMS35.

Nieman, N. J., Schmetz and W.P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers, J. Appl. Meteorol., 32, 1559-1568.

Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji and R. Taira, 2007 : The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369-432.

Oyama, R., R. Borde, J. Schmetz and T. Kurino, 2008: Development of AMV height assignment directly linked to feature tracking at JMA, Proceedings of 9th International Winds Workshop.

Tokuno, M., 1998: Improvements in the method to extract operational cloud motion winds and water vapor motion winds of the GMS-5 system, Proceedings of 4th International Winds Workshop, EUMETSAT, 61-68.

Yamashita, K., 2008: Upgraded usage of AMVs from all geostationary satellite in the operational global and meso-scale 4D-VAR assimilation system at JMA, Proceedings of 4th International Winds Workshop.